Color Face Recognition Using Quaternion PCA

نویسندگان

  • Emad S. Jaha
  • Lahouari Ghouti
چکیده

Recently, biometric systems have attracted the attention of both academic and industrial communities. Advances in hardware and software technologies have paved the way to such growing interest. Nowadays, efficient and cost-effective biometric solutions are continuously emerging. Fingerprint-based biometric systems have emerged as pioneering commercial applications of biometric systems. Face and iris traits have proven to be reliable candidates. Until recently, face recognition research literally followed the research undertaken in the field of fingerprint recognition which is inherently gray-scale. In this paper, efforts are restricted to the investigation of face representations in the color domain. The concept of principal component analysis (PCA) is carried over into the hypercomplex domain (i.e., quaternionic) to define quaternionic PCA (Q-PCA) where color faces are compactly represented. Unlike the existing approaches for handling the color information, the proposed algorithm implicitly accounts for the correlation that exists between the face color components (i.e., red, green and blue, respectively).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Color Face Recognition using High-Dimension Quaternion-based Adaptive Representation

Recently, quaternion collaborative representationbased classification (QCRC) and quaternion sparse representation-based classification (QSRC) have been proposed for color face recognition. They can obtain correlation information among different color channels. However, their performance is unstable in different conditions. For example, QSRC performs better than than QCRC on some situations but ...

متن کامل

Quaternion-Based Discriminant Analysis Method for Color Face Recognition

Pattern recognition techniques have been used to automatically recognize the objects, personal identities, predict the function of protein, the category of the cancer, identify lesion, perform product inspection, and so on. In this paper we propose a novel quaternion-based discriminant method. This method represents and classifies color images in a simple and mathematically tractable way. The p...

متن کامل

Quaternion Based Fuzzy Neural Network Classifier for MPIK Dataset's View-invariant Color Face Image Recognition

This paper presents an effective color image processing system view-invariant person face image recognition for Max Planck Institute Kybernetik (MPIK) dataset. The proposed system can recognize face images of view-invariant person by correlating the input face images with the reference face image and classifying them according to the correct persons’ name/ID indeed. It has been carried out by c...

متن کامل

Face Recognition in Color Using Complex and Hypercomplex Representations

Color has plenty of discriminative information that can be used to improve the performance of face recognition algorithms, although it is difficult to use it because of its high variability. In this paper we investigate the use of the quaternion representation of a color image for face recognition. We also propose a new representation for color images based on complex numbers. These two color r...

متن کامل

Relative Magnitude of Gaussian Curvature Using Neural Network and Object Rotation of Two Degrees of Freedom

This paper presents color processing for face recognition systems and proposes new directions for them. We show that color information helps performance of face recognition and found that specifically YCbCr and YCg'Cr' color spaces are the most appropriate for face recognition. In this paper, the performance of the principal component analysis (PCA)-based face recognition algorithm is performed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012